
131 

Acta Cryst. (1953). 6, 131 

The Probabil ity Distribution of the Magnitude of a Structure Factor. 
I. The Centrosymmetric  Crystal 

BY J. ~ T , ~ ,  A~D H. HAVPTMA~ 

U.S. Naval Research Laboratory, Washington 25, D.C., U.S.A. 

(Received 26 May 1952) 

The general formula for the probability distribution of the structure factor is derived for all rigid 
centrosymmetrie crystals as a function of the indices h, k, l. The distributions and the averages of 
any power of fFI corresponding to a particular space group may be obtained from the general 
formula by means of routine mathematical computations. The analysis includes the case that the 
crystal contains atoms in special positions as well as in general positions. Illustrative examples are 
worked out in detail. 

Introduct ion 

In a recent paper (Hauptman & Karle, 1952), pro- 
bability distributions for the magnitudes of the struc- 
ture factors and for interatomic vectors were obtained 
for asymmetric and centrosymmetric crystals having 
no other symmetry elements. Wilson (1949) had 
previously obtained approximate distributions for the 
magnitudes of the structure factors valid for heavily 
populated unit cells. He also studied the effect of 
symmetry properties on these distributions (Wilson, 
1950). The present series of papers concerns a detailed 
study of the effect of the various symmetry elements 
of crystals on the probability distributions for the 
magnitudes and for the phases of the structure factors. 
These distributions lead in an obvious way to improved 
methods for identifying the space group, adjusting 
observed intensities to an absolute scale, and removing 
the effect of vibrational motion. 

In the development of the probability distributions, 
it should be emphasized that  there are two con- 
ceptually distinct distributions. The first distribution 
arises by fixing the h, k, t indices and allowing the 
atoms in the crystal to range uniformly throughout 
the unit cell but subject to the conditions imposed by 
symmetry. This is the distribution obtained from the 
theoretical considerations to follow. In the second 
distribution, the positions of the atoms are fixed and 
the set of structure-factor magnitudes is obtained by 
allowing the h, k, 1 to range uniformly over the 
integers. This is the distribution of the observed 
structure-factor magnitudes corrected for vibrational 
motion. As recognized by Wilson, it is of great im- 
portance that  these two distributions are identical 
except for differences which occasionally arise when 
there are atoms in certain special positions in the unit 
cell. Actually, for any space group, the h, k, 1 triples 
fall into different classes, and a different distribution 
corresponds to each class. A single distribution for any 
space group can be obtained from these by means of 
a suitable weighted average, the weights depending 

upon the h, k, 1 whose corresponding intensities have 
been observed. This single distribution is the one to be 
compared with the distribution of the observed 
structure-factor magnitudes. Where feasible (i.e. if the 
number of observed intensities is sufficiently large), 
the distributions associated with the separate classes 
may be compared with the corresponding distributions 
of the observed magnitudes. 

In the previous paper (Hauptman & Karle, !952) 
the results were obtained by a development of the 
problem of the random walk. I t  did not appear 
feasible to adapt this method for general treatment of 
the symmetry problem. Instead, a direct analytic 
method was used to obtain the desired distributions. 

In this paper, the general form of all distributions 
is obtained for centrosymmetric crystals and from this 
it is shown how the particular distribution corre- 
sponding to each space group can be found. The pro- 
bability distributions for the structure factors will be 
seen to be expressible in terms of the moments of the 
individual terms of the summation defining the 
structure factor. The particular distributions for each 
space group may thus be found to any desired accuracy 
by means of routine mathematical computations. 

Probabi l i ty  d i s tr ibut ion  

We treat first the case in which the crystal contains 
atoms only in general positions. The structure factor 
for the centrosymmetric crystal is given by 

AT/n 

F =  .,~,fj~(xj, yp zj) , (1) 
]=1 

where n is the symmetry number, fj is the atomic 
scattering factor, N is the number of atoms in the 
unit cell and ~(xj, yj, zj) is some known trigonometric 
function of h, k, 1 and the atomic coordinates which is 
determined by the space group. The probability tha t  
~j = ~(xj, yj, zj) lie between c and c+dc i sg iven  by 
p(c)dc, where p(c) is a function which can be de- 
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termined on the  basis t h a t  the  a toms in the  uni t  cell 
are uniformly distr ibuted.  We make use of the p roper ty  
t ha t  p(c) is an even function which vanishes when the  
magni tude  of c exceeds some positive number ,  b. 
Denote by  P ( A ) d A  the probabi l i ty  t ha t  2' lie between 
A and A + d A .  We next  derive the general result  t ha t  

1 e ~ _,v/n 
P ( A )  = - 1 cos A x  11 q(fi, x) d x ,  (2) 

7f 0 where k=l 

i i q(f~:x) = p(c) cos (fkxc)dc = 2 p(c) cos (f~xc)dc. 
- ~  o ( 3 )  

We ~Tite 
k 

Then i=x 

A o = 0 ,  A~7~----F, 

k = 1, 2, . . . ,  N I n .  (4) 

k = 1, 2, . . . , N / n .  (5) 

The probabil i ty,  Q(c), t ha t  F be less than  c is 

Q(c) = 

. . . . . .  p(~-/~)T(~z, . . . ,  ~Tn)d~z . . . d~v/n , 
- - (6) 

where T ( ~ l ,  " " ,  Win) =- 0 if F > c ,  (7) 

T(~I, . . . ,  ~ / ~ ) =  1 if ~ < c.  (8) 

We choose for T the discontinuous function 

1 1 It°sin [(F--c)x]  
T(~,  . . . ,  ~:~./,,) = 2 ~ ~0 z 

dx (9) 

so t ha t  (7) and (8) are satisfied. Then 

i °~ i= (1 l f=s in [ (F--c)X]dx)× 
QIc) = - - 

o o ' ' "  -- --~x~ ~ ~0 

P ( ~ I ) . . .  P($~wn)d~l . . . d~,v/n (10) 

l l f ~ d x f ~  17oop(~l) - ~- ~ o - ;  - ~  . . . . . .  P(~.~l,) x 

sin [ ( F - - c ) x ] d ~  . . . d~,l,~ . (11) 

But ,  from (5), 

I _LP(~k) sin [( A k--c )x] dtk 

c o  

= I_~(e~)  sin [ ( & - l + A ~ - ~ ) q e ~  (12) 

= sin [(Ak_l--C)X] cos (fk~x)d~k (13) 

= sin [(Ak_l--c)x]q(f i ,  x ) .  (14) 

Repea ted  application of (14) enables ns to xeplace 
(11) by  

1 1 1  ~ sin (cx) ~Vln 
= l l q ( f , , z ) & .  (15) 

Q(c) -2-}-= o x k=l 

In  order to obtain P(A),  (15) is differentiated with " 
respect to c, and c replaced by  A, Tielding (2). 

F rom (3), q(fkx) m a y  be expressed in the  form of 
a series 

q(fkx) = ako--ak2x2+ak4 x a -  • . . . .  (16) 
where 

f~ akj = j ~  m i ,  (17) 

and 
m i = (c)dc (18) 

is the  j t h  moment  of p(c). Consequently,  in order to 
find q(fi, x), it is not  necessary to determine the  function 
p(c). Instead,  we need only determine the  j t h  moment  
of p(c) for even values of j .  Ev iden t ly  the  j t h  moment  
of p(c) is the expected (or average) value of ~i and is 
therefore given by* 

i ff 1 mj = [~(x, y, z )]Jdxdydz .  (19) 
0 0 0 

From (16) and (17), (2) m a y  be reduced by  the 
method employed in equations (3)-(10) of the  previous 
paper  (Haup tman  & Karle,  1952): 

V (  n ) . e x p  ( Ag'n-'~{ n ~ ( 3 m ~ - - m , ) (  n A  2 1 n2A"~ 
P ( A )  = 2=m~ag. 2mg.(r2/ 1--  - ~ ~  1 - -2  • - - - -  + • m2(72] 

ng.a6(30m2 a -  15m2ma+m6) [ n A  ~ n~A 4 1 naA6~ 
- -  2X4X6m~a2a \ 1 - - 3 .  -{ 2 ~ - - - - "  =-~_3 m2a 2 m2(72 15 m2a 2] 

_ n a a s ( 6 3 0 m ~ - 4 2 0 m ~ m 4  + 28m~m e + 35m~- ms) -  3 5 n ~  (3m~- m4) ~ × 
2 X 4 X 6 X  4 4 8mg.a2 

n~A 4 4 naA e 1 n4AS~ 
1--4  • nA2 .4-2" 2 2 - - - - "  s a-4- ~ "  : ~  

m 2 f f  2 m2(7 2 1 5  m 2 a  2 105 m 2 a 2 ]  

n4a10(22680m.~-- 18900m2am4.4.1260m~m6--45m2m8 .4- 3150m2m ~ -  210m4m e -4- re:o)-- 210nSa4a6(3m~ - m4)(30m~-- 15mzm 4-4- me) 
2 X 4 X 6 X 8 X lOm~a~ 

n A  2 10 ngA 4 2 nSA e 1 n4A s 1 nSAl°~ } 

X 1 - - 5 -  + - -  m2a 2 3 m2(72 21 945 m2a2] m9.,72 3 " 2 2  33"4"-- 'm~a244--  • ~ - - . . .  , (20) 

* A short derivation of the function p(c) is given in the Appendix, and (19) is readily derived from it. 
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3r _,V l n 

where ak : Z f ~ :  n Z f ~ .  Since P(A) is an even 
i=i i=l 

function of A, the probability distribution of the 
magnitude of the structure factor is obtained by 
replacing P(A) by 2 P(A).  

Formula (20) is also applicable to the structure 
factor for a noncentrosymmetric crystal whose real 
or imaginary part is identically zero in x, y, z. 

Average value of IFi p 

The average vM, ue of IF[ p can be immediately ob- 
tained from the probability distribution (20) by 
evaluating the integral 

IAIPP(A)dA : 2 (A)dA . (21) 
--00 

Za g 

where p > --1 and F(P-~ --1) is the gamma function, 

(21) becomes the rapidly converging series 

Examples 
The application of (20) is illustrated by deriving the 
probability distribution of the structure factors for 
three space groups, PI ,  P2/m and Ibam: 

P i :  ~ : 2 cos 2:~(hx-q-kyq-lz). (24) 

P2/m: ~ : 4 cos 2:~(hx-i-lz) cos 2~ky .  (25) 

2~ (h+k+ / )  
1barn: ~ : 16 cos 2 4 cos 2~(hx--~l) × 

cos 2:~(ky÷¼1) cos 27dz. (26) 

By means of (19) the moments in Table 1 are readily 
computed• Substitution of these values into (20) 
yields the probability distributions for the structure 
factors. I t  is of interest to note that  the two sets of 
moments in rows 1 and 3 lead to identical distributions. 
In general, however, different space groups lead to 
different distributions. The h, k, 1 triples within a 
space group fall into different families and the distri- 
butions of the magnitudes associated with the triples 
belonging to a particular family are identical. The 
various averages given in Table 2 are readily computed 
from Table 1 and (23). Table 2 shows that  for many 
space groups these averages are not closely approxi- 

n2(Ye (30m~-- 1 5 m 2 m 4 - ~ - m 6 )  
p(p--2) q- 6 T ~ 3 . ~  3 p(p--2)(p--4)  

• , ,~2v2  

haas (630m~-- 420m2m4 ~- 28m~m6--m s + 35m~)-- 35n2~ (3m2-- m4) e [ 
p(p- -  2) (p--4) (p--6) ÷ . . .  

8 [  4 4  / O 

m 2 G 2  

Equation (23) gives the average value of IF[ p for all 
values of p > --1. I t  should be noted that  if p is an 
even integer the series (23) terminates. 

(23) 

mated by the first term in the series. In fact, for the 
higher averages, the major contribution may come 
from terms other than the first. 

Adjustment of data 
I t  is assumed that  the intensities R 2 have already 
been adjusted for vibrational motion and to an 
absolute scale, so that  the average values of nR2/m2a2 
are unity, where each average is taken over a set of 
values of h, k, 1 corresponding to some specified 
s interval. In order to improve the magnitudes still 
further, minor adjustments may be made which will 
bring the actual distribution of the magnitudes into 
agreement with the theoretical distribution, (20). 
This may be done in several ways; either by use of 
the averages, (23), or the complete distribution (20). 
As an example of the latter method, the magnitudes, 
R, are arranged in increasing order. Small but sta- 
tistically significant fractions of the total number of 
magnitudes are then selected, thus dividing the 
magnitude range into intervals. The theoretical range 
of values of the magnitudes in each such interval can 
be computed from (20), and the R values may then 
be adjusted by interpolation to coincide with the 
computed ranges. 

Special positions 
So far, this paper has been concerned with crystals 
having atoms only in general positions. However, the 
methods developed apply equally well to crystals 
having atoms in special positions in addition to those 
in general positions. Equation (1) is replaced by the 
more general 

F : Z f / ~ j ,  t = 2 V i / n i ,  (27) 
i=1 i=1 

where v is the total number of types of positions 
(special and general), exclusive of those atoms in 
fixed special positions, N i is the number of atoms in 
each type of position and n i is the number of equivalent 
atoms in the corresponding type. While N i depends 
upon the particular crystal specimen, v and n i depend 
only on the space group. The functions 2] maintain 
the same form for each fixed value of i, i.e. for values 
of j corresponding to a fixed type of position, and, 
together with v and hi, are known for each space group. 
The probability that  ~i he between c and c+dc now 
depends on j and is given by pj(c)dc, where pi(c) is 
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Space 
group 

P~ 

P 2 / m  

Ibam 

Table 1. Moments for the space groups P L  P2/m, Ibam having atoms in general positions only 

n m~. m 4 m 6 m s 
4(1X3) 2.(~X 3X ~) 28(1X 3X 5X7) 

2 22(½) 2 ~ - ~  X4X X4X6X 

/oh ==Ol =°ro 4 4~(½) 4a(1X3~\2--~] 46(12 x 3 X .  x4x65) 48(lXx4x6x3X 5X~) 

h~4-l 2 =t= 0 4 ,]:2(½)2 44/1X 3~'\2-X-i] 46 X3X ~ 48 
x 4 x  x 4 x 6 x  

h =  k =  0, l even; or 
h - - - - l=  0, k even; or 16 
k=l - - - -  0, h even 

h = O, kl =4= O, It, 1 even; or 
k = O, hl =4= O, h, l even; or 16 
l = O, hk ~ O, h4-k  even 

hkl ~ 0 and 16 
h4-k4- I  even 

169(½) 16'/lx3~\2×4] 166(12 ×3×5~×4×6] 168(12X3X5X78)X4X6X 

, ( 1 × 3 )  2 ( ~ × 3 × ~ )  2 ( ~ 3 × 5 × ~ )  2 162(½) 2 16 ~ 166 16 s 
x 4 x  4 x 6 x  

16t[1×3~ a ( ~ x 3 x ~ )  3 ( ~ : 3 x 5 × ~ )  3 162(½)3 \2---~] 166 16s 
x 4 x  4X6X 

Space 
group 

PT 

P 2 / m  

Ibam 

Table 2. Averages of the powers of IF½ derived from the moments of Table 1 
.Yln 

(No~e that 
i=1 

<121> <12P> <[2p> 

( ~ )  ' (14- 2:~ + 6-?~4- . . )  0.9 30.~ -- 30.4 

k = 0 or [ 0 . 9 \ f \ 0 "  4 20. 6 

) k =~ 0 mad ½ 14-~-~-~ 4-6-~-~ 4- 3a2~--Sa4 0"2 hZ 4- l z =t= 0 "'" 

h- - - -k= '0 ,1  even; or 
h----l ----0, k even; or 
k = l = O, h even 

h -= O, k l ~  O, k, l even; or ) k = O, hl=# O, h, l even; or 2 ½14-2--a-7224-3-~-sss4-... 
I = O, hk :t= 0, h4-k even 

o, 10o0 ) hkl =4= 0 and 2 ½ 1  4a~ 3a~ 
h4-k4-1 even ' "  

<IFI6> 

150.~ - -  45%0. 4 4- 400.6 

1200.~--7200.20.4nt-12800.6 

15a z s - -  45az~  4 4- 4 0 a  6 

(_~) ( 0.4 320.aj_ ) 4 ½ 1 4 - ~ 4 -  3a~ . . . .  80.2 1920.~--15360.4 76800.~--1843200.90.44-13107200.6 

derived 
the moments  

mik --- 1'pi(c)dc = dxdydz 
O 0 0 

are needed. If  qi(fix) is defined as follows: 

in the  Appendix.  However,  as before, only 

(28) 

40. 2 480.~--1920. 4 960a~--I15200.20.44-409600.6 

20.~. 120.~ 4- 240.4 1200.~ s 4- 7200.9.0.4-- I02400. s 

then the desired probability distribution P(A) io 
given by  

1 ,.o~ t 
P(A) --  - 1 cos (Ax) I lq i ( f j x )dx .  (30) 

2g o i=1 

qj(fix) = (c) cos (fixc)dc, (29) 

B y  methods  al ready explained, this  funct ion m a y  be 
wr i t ten  in terms of a series which is a generalization 
of (20) 

P(A) .= 
( {1_ (,_2. + _ .  

Z'f¢ (3mi~-- mj4 ) A 9. 1 

~/(2xZf}.'mi2 ) 2×4(Xf}mjD ~ Zf}mi2 3 

Zf~(30m~2-- 15mj2mi4+ mi6 ( 1  - -  3 • 
- : A ~ A 4 1 A" ) 

X f~mp -t- (.,V, f~mj~)2 -- 1--5 " (X f?mj2) a 
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Z'f s (630m4~.- 420m~ .m/4 + 28m/~.m¢s--m¢8 + 35m~4)- 35 (Z f: (3m~.- m/4)2) ~ 
X 

2 × 4 X 6 X 8 (,~f}?'~2) 4 

( A2 A 4 4 A  6 1 AS ) } 
1 - 4 .  + - . . .  , 

where j ranges from 1 to t. 
The remaining problem concerns .the case that  the 

crystal also contains atoms in fixed special positions. 
If we denote by f '  = f ' (h ,  k, 1), the contribution to 
the structure factor of the atoms in fixed special 
positions, P1,(A) is obtained from (31) by replacing 
A b y  A - - f ' ,  giving 

exp ( (A--f')2~ 
2~,f?mi2] 

P/,(A ) = P(A-- f ' )  = × 
g(2 zf}mj ) 

2 x 4(Xf?m/2) ~ Zf:m q 3 (Xf?m:2) 2] 

_ Z:f: (30m~-2 -- 15mj~ mia + m/6) × 
2 x 4 x  6(21 mj )  

(1--3 (A--f')~ (A--f ' ) '  1 (A--f')6~ } 
+ (zI  j )V - ' " .  ' 

(32) 

where Pr  (A) is the probability distribution for F. 
The structure factor magnitude, IF[, will lie be- 

tween A and A + d A ,  where A ~_ 0, if and only ff 
the ~tructure factor F lies either between A and 
A + d A  or between --A and - -A- -dA .  Therefore, the 
probability that  IFI lie in the interval (A, A + d A )  is 
given by M(A)dA where, 

M(A) = P ( A ~ f ' ) + P ( A - - f ' ) .  (33) 

When the moments mjk for the space group P1 are 
substituted into (33), we obtain (71) of our previous 
paper (Hauptman & Karle, 1952) which was there 
derived from a completely different point of view. 

The average values of IF] k are readily obtained from 
(33).* I t  should be emphasized that  these averages are 
obtained by fixing h, k, l and then allowing the atoms 
to range uniformly throughout the unit cell. As 
pointed out previously (Hauptman & Karle, 1952, 

t 

* E.g. <IFI~> -- f'2 +~Vf~mp. 
i=l 

(31) 

p. 57), this is in general equivalent to the statement 
tha t  the expected value of the ratio of the observed 
IF[ k to the theoretical average of ]FI k is unity. More 
precisely, this is true if for each atom not in a fixed 
special position no relation mlx+mzy%m3z = m o 
exists where the mi's are integers, not all zero (Weyl, 
1915-16, p. 319; Perron, 1921, pp. 143-157). 

A P P E N D I X  

An explicit expression for the function p(c)dc, the 
probability tha t  ~ lie between c and c+dc, may be 
derived by making use of the discontinuous function 
(9) to find the probability, r(c), tha t  ~ be less than c. 
We obtain 

1 l l l  f 111 t °° sin [(~--c)t] dtdxdydz (34) 
r (c ) - -2  ~ o o o~t=o t 

where ~ is a function of x, y, z, h, k, 1 and p(c)=dr/dc. 
Evaluation of (34) gives 

1 { f l I l I lexp( - -c2 /2~2)dxdydz  
p(c)-ffO  o o o 

4 0,.0 o 

exp (--c~/2~ 2) (1 2c~ c4 ) 
\ -- --~ + ~-~ dxdy dz 

1S1S1Slexp( :J2 " 
3 0 0 0  ~ × 

1 - -  3c2 c4 
- ~  + ~4 1~6) dxdydz-- . . . } . (35) 

The various moments mj given by (18) and required 
for (20) are readily found to reduce to (19). 
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